Fourmilab Blockchain Tools
User Guide

by John Walker

Version 1.0.5
November 2021

oW,

g '.
1

Build 826 — 2023-08-20 20:54 UTC

http://www.fourmilab.ch/

Contents

1 User Guide 1
1.1 Overview . . . o o e 1
1.1.1 Bitcoin and Ethereum Address Tools 1

1.1.2 Bitcoin Blockchain Analysis Tools 1

1.2 Blockchain Address Generator 2
1.2.1 Architecture 2

1.2.2 Commands e 3

1.3 Multiple Key Manager 7
1.3.1 Command line options 8

1.4 Paper Wallet Utilities o 8
14.1 Paper Wallet Generator L 8
1.4.1.1 Creating a paper wallet 8

1.4.1.2 Command line options Lo 9

1.4.2 Cold Storage Wallet Validator 10

1.5 Cold Storage Monitor e 10
1.5.1 Watching cold storage addresses Lo oo 11

1.5.2 Command line options Lo 11

1.6 Address Watch 0 L L 12
1.6.1 Command line options 12

1.6.2 Log file formats e 13

1.6.3 Watched address log file o o 13

1.6.4 Block statistics log fileo 14

1.7 Confirmation Watch e 14
1.7.1 Command line options 15

1.8 Transaction Fee Watch 15
1.8.1 Command line options L 16

1.8.2 Log file formato 16
1.8.2.1 Estimated fee record L 16

1.8.2.2 Block fee statistics record 17

1.9 RPC API configuration e 17
1.10 Imstallation L e e 18
1.10.1 Required Perl modules 18
1.10.2 Required Python modules Lo 19
1.10.3 Building from original source code 19
1.10.4 Configuration parameters Lo 19
1.10.5 Build procedure 20

1.11 License and Disclaimer of Warranty and Liability 20

Chapter 1

User Guide

1.1 Overview

Fourmilab Blockchain Tools provide a variety of utilities for users, experimenters, and researchers working
with blockchain-based cryptocurrencies such as Bitcoin and Ethereum. These are divided into two main
categories.

1.1.1 Bitcoin and Ethereum Address Tools

These programs assist in generating, analysing, archiving, protecting, and monitoring addresses on the
Bitcoin and Ethereum blockchains. They do not require you to run a local node or maintain a copy of
the blockchain, and all security-related functions may be performed on an “air-gapped” machine with no
connection to the Internet or any other computer.

¢ Blockchain Address Generator creates address and private key pairs for both the Bitcoin and Ethereum
blockchains, supporting a variety of random generators, address types, and output formats.

o Multiple Key Manager allows you to split the secret keys associated with addresses into m multiple
parts, from which any & < n can be used to reconstruct the original key, allowing a variety of secure
custodial strategies.

e Paper Wallet Utilities includes a Paper Wallet Generator which transforms a list of addresses and
private keys generated by the Blockchain Address Generator or parts of keys produced by the Multiple
Key Manager into a HTML file which may be printed for off-line “cold storage”, and a Cold Storage
Wallet Validator that provides independent verification of the correctness of off-line copies of addresses
and keys.

e Cold Storage Monitor connects to free blockchain query services to allow periodic monitoring of a list
of cold storage addresses to detect unauthorised transactions which may indicate that they have been
compromised.

1.1.2 Bitcoin Blockchain Analysis Tools

This collection of tools allows various kinds of monitoring and analysis of the Bitcoin blockchain. It does
not support Ethereum. These programs are intended for advanced, technically-oriented users who run their
own full Bitcoin Core node on a local computer. Note that anybody can run a Bitcoin node as long as they
have a computer with the modest CPU and memory capacity required, plus the very large (and inexorably
growing) file storage capacity to archive the entire Bitcoin blockchain. You can run a Bitcoin node without
being a “miner”, or exposing your computer to external accesses from other nodes unless you so wish.

These tools are all read-only monitoring and analysis utilities. They do not generate transactions of any
kind, nor do they require unlocked access to the node owner’s wallet.

e Address Watch monitors the Bitcoin blockchain and reports any transactions which reference addresses
on a “watch list”, either deposits to the address or spending of funds from it. The program may also
be used to watch activity on the blockchain, reporting statistics on blocks as they are mined and
published.

e Confirmation Watch examines blocks as they are mined and reports confirmations for a transaction as
they arrive.

e Transaction Fee Watch analyses the transaction fees paid to include transactions in blocks and the
reward to miners, producing real-time statistics and log files which may be used to analyse transaction
fees over time.

1.2 Blockchain Address Generator

The Blockchain Address Generator, with program name blockchain_address, is a stand-alone tool for
generating addresses and private keys for both the Bitcoin and Ethereum blockchains. This program does
not require access to a Bitcoin node and may be run on an “air gapped” machine without access to the
Internet. This permits generating keys and addresses for offline cold storage of funds (for example, in paper
wallets kept in secure locations) without the risk of having private keys compromised by spyware installed
on the generating machine.

The Address Generator may be run from the command line (including being launched by another program)
or interactively, where the user enters commands from the keyboard. The commands used in both modes of
operation are identical.

1.2.1 Architecture

The address generator is not a single-purpose utility, but rather more of a toolkit which can be used in a
variety of ways to meet your requirements. The program is implemented as a “stack machine”, somewhat
like the FORTH or PostScript languages. Its stack stores “seeds”, which are 256-bit integers represented as
64 hexadecimal digits, “0” to “F” (when specifying seeds in hexadecimal, upper or lower case letters may be
used interchangeably). Specifications on the command line are not options in the usual sense, but rather
commands that perform operations on the stack. When in interactive mode, the same commands may be
entered from the keyboard, without the leading “~”, and perform identically.

Here are some sample commands which illustrate operations you can perform.

blockchain_address -urandom -btc
Obtain a seed from the system’s fast (non-blocking) entropy source and generate a Bitcoin key /address
pair from it, printing the results on the console.

blockchain_address -repeat 10 -pseudo -format CSV -eth
Generate 10 seeds using the program’s built-in Mersenne Twister pseudorandom generator (seeded
with entropy from the system’s fast entropy source), then create Ethereum key/address pairs for each
and write as a Comma-Separated Value (CSV) file intended, for example, as offline “paper wallet” cold
storage.

blockchain_address -repeat 16 -hbapik MyApiKey -hotbits -shuffle -repeat 1 -xor -test -btc

Request 16 seeds from Fourmilab’s HotBits radioactive random number generator (requires Internet
connection), shuffle the bytes among the 16 seeds, exclusive-or the two top seeds together, perform a
randomness test on the result using Fourmilab’s random sequence tester, then use the seed to generate
a Bitcoin key/address pair.

https://www.fourmilab.ch/hotbits/
https://www.fourmilab.ch/random/

1.2.2 Commands

-aes
Encrypt the second item on the stack with the Advanced Encryption Standard, 256 bit key size version,
with the key on the top of the stack. The stack data are encrypted in two 128 bit AES blocks in cipher-
block chaining mode and the encrypted result is placed on the top of the stack.

~bindump filename
Write the entire stack in binary to the named filename. A dump to file may be reloaded onto the
stack with the -binfile command.

-binfile filename
Read successive 64 byte blocks from the binary file filename and place them on the stack, pushing
down the stack with each block.

-btc
Use the seed on the top of the stack, which is removed after the command completes, to generate a
Bitcoin private key and public address, which are displayed on the console in all of the various formats
available. If the -format command has been to select CSV output, CSV records are generated using
the specified format options. If a —~repeat value has been set, that number of stack items will be used
to generate multiple key/address pairs.

-clear
Remove all items from the stack.

-drop
Remove the top item from the stack.

—dump
Dump the entire stack in hexadecimal to the console or to a file if —outfile has been set. A dump to
file may be reloaded onto the stack with the ~hexfile command.

—dup
Duplicate the top item on the stack and push on the stack.

-eth

Generate an Ethereum private key and public address from the seed at the top of the stack, which is
removed. The key and address are displayed on the console in human-readable form. If the -format
command has been to select CSV output, CSV records are generated using the specified format op-
tions. If a -repeat value has been set, that number of stack items will be used to generate multiple
key/address pairs.

-format fmt
Set the format to be used for key/address pairs generated by the -btc and -eth commands. If the
first three letters of fmt are “CSV” (case-sensitive), a Comma-Separated Value file is generated. Letters
following “CSV” select options, which vary depending upon the type of address being generated. For
Bitcoin addresses, the following options are available.

q Use uncompressed private key

u Use uncompressed public address
Legacy (“1”) public address
Compatible (“3”) public address
Segwit “bcl” public address

n o

For Ethereum addresses, options are:

n No checksum on public address
p Include full public key

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

For either kind of address, the letter “k” indicates that a subsequent key generation command will not
remove the keys it processes from the stack. This permits generating the same keys in different formats.
The letter “b” on either address type causes the private key to be omitted from CSV format output,
replaced by a null string. This allows generation of address lists containing only public addresses that
may be used with utilities such as cold_comfort and address_watch without risking compromise of
the private keys.

-hbapik APlkey
When requesting true random data from Fourmilab’s HotBits radioactive random number generator,
use the APIkey to permit access to the generator. If you don’t have an API key (they are free), you
may request pseudorandom data based upon a radioactively-generated seed by specifying an API key
of “Pseudorandom”.

-help
Print a summary of these commands.

-hexfile filename
Load one or more seeds from the named filename, which contains data in hexadecimal format. White
space in the file (including line breaks) is ignored, and each successive sequence of 64 hexadecimal
digits is pushed onto the stack as a 256 bit seed. The ~hexfile command can load keys dumped to a
file with the —outfile and -dump commands back onto the stack.

-hotbits
Retrieve one or more 256 bit seeds from Fourmilab’s HotBits radioactive random number generator,
using the API key specified by the ~hbapik command. If the ~repeat command has specified multiple
keys, that number of keys will be retrieved from HotBits and pushed onto the stack.

—inter
Enter interactive mode. The user is prompted for commands, which are entered exactly as on the
command line, except without the leading hyphen on the command name. To exit interactive mode
and return to processing commands from the command line, enter “end”, “exit”, “quit”, or the end

of file character.

-minigen

Generate a Bitcoin mini private key, display the generated key, and push the full seed for the key onto
the stack. Mini private keys were introduced to allow encoding a Bitcoin private key on physical coins,
bills, or other objects which lack the space for a full private key, which can be up to 52 characters long.
A mini key is just 30 characters, but can represent only a subset of possible Bitcoin addresses and
is consequently less secure—they should be used only when absolutely necessary. Due to the nature
of mini keys, the generation process differs from that used by the -btc command. The -minigen
command internally generates the seed for the key by mixing the system’s fast entropy generator and
this program’s internal pseudorandom generator seeded by the system fast entropy generator. After
finding a suitable key, it pushes the seed onto the stack and displays the corresponding key. You
may then use the -btc command to generate the corresponding public Bitcoin address in whichever
format(s) you wish. If the -format is set to “CSV”, an address file is generated which is compatible
with the btc command, but with the addition of a fifth field in every record containing the mini key.
You may use the -repeat command to generate multiple keys and the “k” option on the -format to
keep the seeds on the stack.

-minikey mini_private_key
Validate and decode the specified mini private key (see above) and, if it is properly formatted, place
the seed it encodes on the stack. You may then use the -btc command to generate other forms of
private keys or public addresses from the seed. Both legacy 22 character and the present standard 30
character mini keys may be specified.

-mnemonic
Generate a Bitcoin Improvement Proposal 39 (BIP39) mnemonic phrase from the seed on the top of

https://www.fourmilab.ch/hotbits/apikey.html
https://en.bitcoin.it/wiki/Mini_private_key_format
https://en.bitcoin.it/wiki/BIP_0039

-not

the stack. The seed remains on the stack.

Invert the bits of the seed on the top of the stack.

-outfile filename

Output from subsequent -btc, —eth, and dump commands will be written to filename instead of stan-
dard output. Specifying a filename of “~” restores output to standard output. Each key generation
command overwrites any previous output in filename; it is not concatenated. Note that a file written
by -dump may be loaded back on the stack with the ~hexfile command.

—over

P

Duplicate the second item on the stack and push it onto the top of the stack.

Print the top item on the stack on the console.

-phrase words...

Push a key defined by a Bitcoin Improvement Proposal 39 (BIP39) mnemonic phrase on the stack. On
the command line, the phrase should be enclosed in quotes.

-pseudo

Push one or more seeds generated by the internal Mersenne Twister pseudorandom generator onto the
stack. If the -repeat command has been set to greater than one, that number of seeds will be generated
and pushed. The pseudorandom generator is itself seeded by entropy supplied by the system’s fast
entropy source (/dev/urandom on most Unix-like systems).

-pseudoseed

Use the number of stack items set by -repeat to seed the pseudorandom generator. You may specify
up to 78 stack items, representing 624 32-bit seed values. Any more than 78 are not used will be left
on the stack. Any previous generator and seed are deleted. This is normally used only for regression
testing where repeatable pseudorandom data are required.

—-random

Push one or more seeds read from the system’s strong entropy source (/dev/random on most Unix-like
systems) onto the stack. If the -repeat command has been set to greater than one, that number of
seeds will be generated and pushed. Reading data from a strong source faster than the system can
collect hardware entropy may result in delays: the program will wait as long as necessary to obtain
the requested number of bytes.

-repeat n

Commands which generate and consume seeds will create and use n seeds instead of the default of 1.
To restore the default, specify repeat 1.

-roll n

-rot

Rotate the top n stack items, moving item n to the top of the stack and pushing other items down.

Rotate the top three stack items. Item three becomes the top of the stack and the other items are
pushed down.

-rrot

Reverse rotate the top three stack items. The seed on the top of the stack becomes the third item and
the two items below it move up, with the second becoming the top.

-seed hex__data

The 256 bit seed, specified as 64 hexadecimal digits, is pushed onto the stack. The seed may be
preceded by “0x”, but this is not required.

https://en.bitcoin.it/wiki/BIP_0039

-sha2
The seed on the top of the stack is replaced by the hash (digest) generated by the Secure Hash Algorithm
2 (SHA-2), 256 bit version (SHA2-256). If -repeat has been set greater than one, the specified number
of seeds will be removed from the stack and concatenated, top down, the digest computed, and placed
back on the stack.

-sha3
The seed on the top of the stack is replaced by the hash (digest) generated by the Secure Hash Algorithm
3 (SHA-3), 256 bit version (SHA3-256). If -repeat has been set greater than one, the specified number
of seeds will be removed from the stack and concatenated, top down, the digest computed, and placed
back on the stack.

-shuffle
Shuffle bytes of items on the stack using pseudorandom values generated as for the —-pseudo command.
Shuffling bytes can mitigate the risk of interception of seeds generated remotely and transmitted across
the Internet. (Secure https: connections are used for all such requests, but you never know....) The
number of items shuffled is set by -repeat.

-swap
Exchange the top two items on the stack.

-test
Use the Fourmilab ent random sequence tester to evaluate the apparent randomness of the top items
on the stack. The number of items tested may be set with -repeat. You must have ent installed on
your system to use this command. Randomness is evaluated at the bit stream level.

-testall
Use the Fourmilab ent random sequence tester to evaluate the apparent randomness of the entire
contents of the stack. You must have ent installed on your system to use this command. Randomness
is evaluated at the bit stream level.

-testmode n
Set developer test modes to the bit-coded value n, which is the sum of the mode bits to enable. These
are intended for development and regression testing and should not be enabled for production use,
leaving the setting at the default of 0. The 1 bit makes the -minigen produce deterministic output
from a fixed -pseudoseed. The 2 bit causes blockchain_address to list all of the Perl library modules
it has used during its execution.

-type Any text
Display the text on the console. This is often used in command files to inform the user of what’s going
on.

-urandom
Push one or more seeds read from the system’s fast entropy source (/dev/urandom on most Unix-like
systems) onto the stack. If the -repeat command has been set to greater than one, that number of
seeds will be generated and pushed. The fast generator has no limitation on generation rate, so you
may request any amount of data without possibility of delay.

-wif private__key
Push the seed represented by the Bitcoin Wallet Import Format (WIF) key onto the stack.

-xor
Perform a bitwise exclusive or of the top two items on the stack and push the result on the stack.

-zero
Push an all zero seed on the stack.

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3
https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/

1.3 Multiple Key Manager

The Multiple Key Manager (multi_key) splits the private keys used to access funds stored in Bitcoin or
Ethereum addresses into multiple independent parts, allowing them to be distributed among a number of
custodians or storage locations. The original keys may subsequently be reconstructed from a minimum
specified number of parts. Each secret key is split into n parts (n > 2), of which any k,2 < k < n are
sufficient to reconstruct the entire original key, but from which the key cannot be computed from fewer than
k parts. In the discussion below, we refer to n as the number of parts and k as the number needed. The
splitting and reconstruction of keys is performed using the Shamir Secret Sharing technique.

The ability to split secret keys into parts allows implementing a wide variety of custodial arrangements.
For example, a company treasury’s cold storage vault might have secret keys split five ways, with copies
entrusted to the chief executive officer, chief financial officer, an inside director, an outside director, and one
kept in a safe at the office of the company’s legal firm. If the parts were generated so that any three would
re-generate the secret keys, then at least three people would have to approve access to the funds stored in
the vault, which reduces the likelihood of their misappropriation. The existence of more parts than required
guards against loss or theft of one of the parts: should that happen, three of the remaining copies can be
used to withdraw the funds and transfer them to new accounts protected by new multi-part keys.

To create multiple keys, start with a comma-separated value (CSV) file in the format created by blockchain_address
with “format CSV” selected. Let’s call this file keyfile.csv. Now, to split the keys in this file into five
parts, any three of which are sufficient to reconstruct the original keys, use the command:

multi_key -parts 5 -needed 3 keyfile.csv

This will generate five split key files named keyfile-1.csv, keyfile-2.csv, .. keyfile-5.csv. These are
the files which are distributed to the five custodians. After verifying independently that the parts can be
successfully reconstructed (you can’t be too careful!), the original keyfile.csv is destroyed, leaving no copy
of the complete keys. (All of this should, of course, be done on an “air gapped” machine not connected to
any network or external device which might compromise the complete keys while they exist.)

When access to the keys is required, any three of the five parts should be provided by their holders and
combined with a command like:

multi_key -join keyfile-4.csv keyfile-1.csv keyfile-2.csv

Again, you can use any three parts and specify them in any order. This will create a file named keyfile-merged.csv
containing the original keys in the same format as was created by blockchain_address. You can then use

this file with any of the other utilities in this collection or use one or more of the secret keys to “sweep”

the funds into a new address. To maximise security, once a set of keys has been recombined, funds should

be removed from all and those not used transferred to new cold storage addresses, broken into parts as you

wish. In many cases, it makes sense to split individual keys rather than a collection of many so you need

only join the ones you immediately intend to use.

Once the parts have been generated on the air-gapped machine, they are usually written to offline paper
storage (using the paper_wallet program, for example, which works with split key files as well as complete
key files) or archival media such as write-once optical discs, perhaps with several identical redundant copies
per part. Their custodians should store the copies of their parts in multiple secure, private locations to
protect against mishaps that might destroy all copies of their part.

The ability to create multiple parts allows flexibility in their distribution. You might, for example, entrust
two parts to the company CEQO, who would only need one part from another officer or director to access the
vault, while requiring three people other than the CEO to access it.

Although primarily intended to split blockchain secret keys into parts, multi_key may be used to protect
and control access to any kind of secret which can be expressed as 1024 or fewer text characters: for example,
passwords on root signing certificates, decryption keys for private client information, or the formula for fizzy
soft drinks.

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

1.3.1 Command line options

-help
Print how to call information.

-join
Reconstruct the original private keys from the parts included in the files specified on the command line.
You must supply at least the —-needed number of parts when they were created (if you specify more,
the extras are ignored). The output is written to a file with the specified —name or, if none is given,
that of the first part with its number replaced with “-merged”. The file will be in the comma-separated
value (CSV) format in which blockchain_address writes addresses and keys it generates and is used
by other programs in this collection.

-name name
When splitting keys, the individual part files will be named “name-n.csv”, where n is the part number.
If no —name is specified, the name of the first key file supplied will be used.

-needed k
When reconstructing the original keys, at least k parts (default 3) must be specified. This option is
ignored when joining the parts.

-parts n
Keys will be split into n parts (default 3). This option is ignored when joining parts.

-prime p
Use the prime number p when splitting parts. This should only be specified if you're a super expert
who has read the code, understands the algorithm, and knows what you're doing, otherwise you're
likely to mess things up. The default is 257.

1.4 Paper Wallet Utilities

The safest way to store cryptocurrency assets not needed for transactions in the near term is in “cold storage”:
kept offline either on a secure (and redundant) digital medium or, safest of all, paper (again, replicated and
stored in multiple secure locations). A cold storage wallet consists simply of a list of one or more pairs of
blockchain public addresses and private keys. Funds are sent to the public address and the corresponding
private key is never used until the funds are needed and they are “swept” into an online wallet by entering
the private key.

The blockchain_address program makes it easy to generate address and key pairs for offline cold storage,
encoding them as comma-separated value (CSV) files which can easily be read by programs. For storage on
paper, a more legible human-oriented format is preferable, which the utilities in this chapter aid in creating
and verifying.

1.4.1 Paper Wallet Generator

The paper_wallet program reads a list of Bitcoin or Ethereum public address and private key pairs, gener-
ated by the blockchain_address program in comma-separated value (CSV) format, and creates an HTML
file which can be loaded into a browser and then printed locally to create paper cold storage wallets. In the
interest of security, this process, as with generation of the CSV file, should be done on a machine with no
connection to the Internet (“air gapped”), and copies of the files deleted from its storage before the machine
is connected to a public network.

1.4.1.1 Creating a paper wallet

Assume you’ve created a cold storage wallet with twenty Ethereum addresses using the blockchain_address
program, for example with the command:

blockchain_address -repeat 20 -urandom -outfile coldstore.csv -format CSV -eth

This should be done on the same air-gapped machine on which you’ll now create the paper wallet. Be
careful to generate the coldstore.csv file in a location you’ll erase before connecting the machine to a
public network. If you wish to keep a machine-readable cold storage wallet, copy the coldstore.csv file
to multiple removable media (for example, flash storage devices [perhaps encrypted], writeable compact
discs, etc.) Be aware that no digital storage medium has unlimited data retention life, and even if the
data are physically present, it may be difficult to near-impossible to find a drive which can read it in the
not-so-distant future. By contrast, we have millennia of experience with ink on paper, and if protected from
physical damage, a printed cold storage wallet will remain legible for centuries.

Now let’s create a paper wallet. Using the coldstore.csv file we've just generated and the default param-
eters, this can be done with:

paper_wallet coldstore.csv >coldstore.html

You can now load the coldstore.html file into a Web browser with a file:coldstore.html URL, use print
preview to verify it is properly formatted, then print as many copies as you require for safe storage to a local
printer. Even though you’re using a Web browser to load and print the file, security is not compromised as
long as the computer running it is not connected to the Internet. After printing the paper wallet, be sure to
clear the browser’s cache, deleting any copy it may have made of the file.

1.4.1.2 Command line options

-date text
The specified text will be used as the date in the printed wallet. Any text may be used: enclose it in
quotes if it contains spaces or special characters interpreted by the shell. If no -date is specified, the
current date is used, in ISO-8601 YYYY-MM-DD format.

-font fname
Use HTML/CSS font name fname to display addresses and keys. The default is monospace.

-help
Print a summary of the command line options.

-offset n
The integer n will be added to the address numbers (first CSV field) in the input file. If you've
generated a number of cold storage wallets with the same numbers and wish to distinguish them in
the printed versions, this allows doing so.

-perpage n
Addresses will be printed n per page. The default is 10 addresses per page. The number which will fit
on a page depends upon your paper size, font selection, and margins used when printing—experiment
with print preview to choose suitable settings.

-prefix text
Use text as a prefix for address numbers from the CSV file (optionally adjusted by the —offset option).
This allows further distinguishing addresses in the printed document.

-separator text
Display addresses and private keys as groups of four letters and numbers separated by the sequence
text, which may be an HTML text entity such as “–”.

-size sspec
Use HTML/CSS font size sspec to display addresses and keys. The default is medium.

-title text
Use the specified text as the title for the cold storage wallet. If no title is specified, “Bitcoin Wallet”
or “Ethereum Wallet” will be used, depending upon the type of address in the CSV file.

-weight wgt
Use HTML/CSS font weight wgt to display addresses and keys. The default is normal.

1.4.2 Cold Storage Wallet Validator

When placing funds in offline cold storage wallets, an abundance of caution is the prudent approach. By
their very nature, once funds are sent to the public address of a cold storage wallet, that address is never
used again, nor is its private key ever used at all until the time comes, perhaps years or decades later, to
“sweep” the funds from cold storage back into an online wallet. Consequently, if, for whatever reason, there
should be an error in which the private key in the offline wallet does not correspond to the public address
to which the funds were sent, those funds will be irretrievably lost, with no hope whatsoever of recovery.
Entering the private key into a machine connected to the Internet in order to verify it would defeat the entire
purpose of a cold storage wallet: that its private keys, once generated on an air-gapped machine, are never
used prior to returning the funds from cold storage.

While the circumstances in which a bad address/key pair might be generated and stored may seem remote,
the consequences of this happening, whether due to software or hardware errors, incorrect operation of the
utilities used to generate them, or malice, are so dire that a completely independent way to verify their
correctness is valuable.

The validate_wallet program performs this validation on cold storage wallets, either in the CSV format
generated by blockchain_address or the printable HI'ML produced by paper_wallet. Further verification
that the printed output from the HTML corresponds to the file which was printed will require manual
inspection or scanning and subsequent verification. The validate_wallet program is a “clean room” re-
implementation of the blockchain address generation process used by blockchain_address to create cold
storage wallets. It is written in a completely different programming language (Python version 3 as opposed
to Perl), and uses the Python cryptographic libraries instead of Perl’s. While it is possible that errors in
lower-level system libraries shared by both programming languages might corrupt the results, this is much
less likely than an error in the primary code or the language-specific libraries they use.

1.5 Cold Storage Monitor

For safety, cryptocurrency balances which are not needed for active transactions are often kept in “cold
storage”, either off-line in redundant digital media not accessible over a network or printed on paper (for
example, produced with the paper_wallet program) kept in multiple separate locations. Once sent to these
cold storage addresses, there should be no further transactions whatsoever referencing them until they are
“swept” back into an active account for use.

But under the principle of doveryay, no proveryay (trust, but verify), a prudent custodian should monitor
cold storage addresses to confirm they remain intact and have not been plundered by any means. (It’s
usually an inside job, but you never know.) One option is to run a “hot monitor” that constantly watches
transactions on the blockchain such as the address_watch utility included here, but that requires you to
operate a full Bitcoin node and does not, at present, support monitoring of Ethereum addresses.

The cold_comfort utility provides a less intensive form of monitoring which works for both Bitcoin and
Ethereum cold storage addresses, does not require access to a local node, but instead uses free query services
that return the current balance for addresses. You can run this job periodically (once a week is generally
sufficient) with a list of your cold storage addresses, producing a report of any discrepancies between their
expected balances and those returned by the query.

Multiple query servers are supported for both Bitcoin and Ethereum addresses, which may be selected by
command line options, and automatic recovery from transient errors while querying servers is provided.

10

https://en.wikipedia.org/wiki/Trust,_but_verify

1.5.1 Watching cold storage addresses

The list of cold storage addresses to be watched is specified in a CSV file in the same format produced by
blockchain_address and read by paper_wallet, plus an extra field giving the expected balance in the cold
storage address. For example, an Ethereum address in which a balance of 10.25 Ether has been deposited
might be specified as:

1,"0x1F77Ea4C2d49fB89a72A5F690fc80deFbb712021","",10.25

The private key field is not used by the cold_comfort program and should, in the interest of security, be
replaced by a blank field as has been done here. There is no reason to expose the private keys of cold
storage addresses on a machine intended only to monitor them. You can use the “b” and “k” options
on a -format CSV command to generate a copy of the addresses without the private keys. To query all
addresses specified in a file named coldstore.csv and report the current and expected balances, noting any
discrepancies, use:

cold_comfort -verbose coldstore.csv

If you don’t specify -verbose, only addresses whose balance differs from that specified in the CSV file will
be reported.

1.5.2 Command line options
The cold_comfort program is configured by the following command line options.

-btcsource sitename
Specify the site queried to obtain the balance of Bitcoin addresses. The sites supported are:

e blockchain.info
e blockcypher.com
e btc.com

You must specify the site name exactly as given above.

-dust n

Some miscreants use the blockchain as a means of “spamming” users, generally to promote some shady,
scammy scheme. They do this by sending tiny amounts of currency to a large number of accounts,
whose holders they hope will be curious and investigate the transaction that sent them, in which the
spam message is embedded, usually as bogus addresses. You might think getting paid to receive spam
is kind of cool, but the amounts sent are smaller than the transaction cost it would take to spend
or aggregate them with other balances. This is an irritation to cold storage managers, who may find
their inactive accounts occasionally receiving these tiny payments, which in blockchain argot are called
“dust”. This option sets the threshold n (default 0.001) below which reported balances in excess of
that expected will be ignored and not considered discrepancies. If -verbose is specified, they will be
flagged in the report as “Dust”.

-ethsource sitename
Specify the site queried to obtain the balance of Ethereum addresses. The sites supported are:

e blockchain.com
e etherscan.io
e ethplorer.io

You must specify the site name exactly as given above.

-help
Print a summary of the command line options.

11

-loop
Loop forever querying addresses. After each pass through all the addresses, a pause of -waitloop
seconds will occur.

-retry n
If a query fails, retry it n times before abandoning the request and reporting the failure (default 3).

-shuffle
Shuffle the order in which addresses are queried before each pass checking them. This may (or may
not) make it less obvious they represent a single cold storage vault.

-sort
When -shuffle is specified, sort the results from queries back into the order the addresses were
specified in the files on the command line.

-verbose
Report all addresses, even if an address’s current balance is the same as expected. Transient query
failures and retries are also reported.

-waitconst n
Wait n seconds (default 17) between queries for address balances. This avoids overloading the sites
providing this free service and getting banned for abusing them.

-waitloop m
When using the -1loop option, pause for n seconds (default 3600) after completing queries for all the
addresses in the list before commencing the next pass.

-waitrand n
Add a random number between 0 and n seconds (default 20) to the constant set by waitconst between
individual queries. This further reduces the load on the query sites and makes it less obvious they're
coming from an automated process.

1.6 Address Watch

The address_watch program monitors the Bitcoin blockchain, watching for transactions which involve one
or more watched Bitcoin addresses, specified on the command line, in a file listing addresses to watch, or
from the addresses in a Bitcoin Core wallet. Address Watch can be used by those who keep Bitcoin reserves
in “cold storage”, on paper or offline devices for security, alerting them if one of these addresses is used in a
transaction, indicating its security has been compromised. The program can also display statistics of blocks
added to the blockchain and write a log that can be used for analysis of the blockchain’s behaviour. This
program requires access to a Bitcoin node with a full copy of the blockchain, configured with transaction
indexing (“txindex=17).

1.6.1 Command line options

Address Watch is configured by the following command line options. In addition to the options listed
here, an additional set of options, common to other programs in the collection, specifies how the program
communicates with the Bitcoin Core Application Programming Interface (API): see “RPC API configuration”
for details.

-bfile filename
Specifies a file used to save the most recent block examined by the program. When the program
starts, it begins scanning at the next block. As each block is processed, the block file is updated so a
subsequent run of the program will start at the next block.

-end n
Stop scanning and exit after processing block n. If no -end is specified, address_watch will continue

12

scanning for newly-published blocks at the specified -poll interval.

-help
Print a summary of the command line options.

-1file filename
For each transaction involving a watched address, append an entry to a log file containing fields in
Comma Separated Value (CSV) format as described in “Watched address log file” below.

-poll time
After reaching the current end of the blockchain, check for newly-published blocks after the specified
time in seconds. If time is set to zero, address_watch will exit after scanning the last block.

-sfile filename
As each block is processed, append an entry describing it to the statistics file filename. Records are
written in Comma Separated Value (CSV) format as described in “Block statistics log file” below.

-start n
Start scanning the blockchain at block n. If no -start is specified, scanning will begin with the next
block after that specified in the -bfile file or with the next block published.

—-stats
For each block processed, print statistics about its content on the console. The statistics are the same
as written to a file by the -sfile option, but formatted in a primate-readable format.

-type Any text
Print the text on the console.

-verbose
Print detailed information about the contents of blocks. The more times you specify -verbose, the
more output you’ll get.

-wallet
Include addresses in the Bitcoin Core wallet with unspent balances in those watched for transactions.
Since every spend transaction in Bitcoin Core completely spends the source address and places unspent
funds in a new change address, the option will automatically track these newly-generated addresses as
they appear and are used. The list of wallet addresses is updated before scanning each new block that
arrives.

-watch [label, | address
Add the specified Bitcoin address to the watch list. You can specify a label before the address, separated
by a comma, for example: "Money Bin,1ScroogeYebEqDTbdjk36WzLxjCZTkNe3u".

-wfile filename
Add addresses read from the specified filename in Comma Separated Value (CSV) format to the watch
list. Each line in the file specifies an address as: Label, Bitcoin address, Private key, Balance. The Label
is an optional human-readable name for the address, and the Private key and Balance fields are not
used by this program.

1.6.2 Log file formats

The address_watch program can write two log files, both in Comma Separated Value format, with fields as
follows. New items are appended to an existing log file.

1.6.3 Watched address log file

The -1file option enables logging of transactions involving watched addresses. Each log item is as fol-
lows.

13

Address label from wallet

Bitcoin address

Value (negative if spent, positive if received)
Date and time (ISO 8601 format)

Block number

Transaction ID

Block hash

A o e

1.6.4 Block statistics log file

The -sfile option logs statistics for blocks as they are added to the blockchain, with records containing the
following fields.

—_

Block number

Date and time (Unix time() format)
Number of transactions in block
Smallest transaction (bytes)

Largest transaction (bytes)

Mean transaction size (bytes)
Transaction size standard deviation
Total size of transactions (bytes)

© X NG W

Smallest transaction value (BTC)

H
e

Largest transaction value (BTC)

—_
—

. Mean transaction value (BTC)

—_
[\

. Transaction value standard deviation
. Total transaction value (BTC)
. Total miner reward for block (including transaction fees)

— = =
Ut = W

. Base miner reward for block (less transaction fees)

1.7 Confirmation Watch

When a Bitcoin transaction is posted to the network, it first is placed in the “mempool” by nodes which
receive it. Miner nodes choose transactions from the mempool, usually based upon the transaction fee per
byte they offer, validate them against their local copy of the entire Bitcoin blockchain and, if and when they
find a hash for a candidate block that meets the present difficulty requirement, publish the block to the
blockchain and notify other nodes of its publication. Other nodes independently validate the transactions it
contains and add their confirmations to the transaction, which are recorded on the blockchain. By convention,
a transaction is deemed fully confirmed once six or more independent confirmations for it are recorded on
the blockchain. Most Bitcoin wallet programs will not spend funds received (even “change” from funds in
your own wallet which have been partially spent) until at least six confirmations are received for its transfer
to your wallet.

The confirmation_watch utility monitors a transaction on the blockchain and reports confirmations as they
arrive. It can be used to monitor pending transactions and report when a specified number of confirmations
are received. Depending upon the configuration, you can run confirmation_watch with the following
command lines.

confirmation_watch transaction__id block__hash
This form of command may always be used, regardless of configuration. It specifies the hexadecimal
transaction ID and hash of the block which contains it. Both of these can be found in the console
output and log file generated by address_watch.

14

confirmation_watch transaction__id
If your Bitcoin Core node has been configured with “txindex=1”, which maintains an index of trans-
actions, you can specify just the transaction__id, with the block hash found from the transaction index.

confirmation_watch address/label
If you have specified a log file maintained by address_watch on the command line with the -1file
option, you may specify just the Bitcoin public address to which the transaction pertains or the label
you have assigned to it in the Bitcoin Core wallet. The most recent transaction involving that address
will be retrieved from the log file and monitored for confirmations.

1.7.1 Command line options

Confirmation Watch is configured by the following command line options. In addition to the options listed
here, an additional set of options, common to other programs in the collection, specify how the program
communicates with the Bitcoin Core Application Programming Interface (API): see “RPC API configuration”
for details.

—-confirmed n
Specifies the number of confirmations which must be received before a transaction is deemed confirmed.
If a transaction is being monitored by the -watch option, confirmation_watch will exit after this
number of confirmations have arrived.

-help
Print a summary of how to call and command line options.

-1file filename
Use the log file written by the address_watch program to locate transactions for a Bitcoin address
specified either by its public address or a label given to it in the Bitcoin Core wallet. If this option is
not specified, transactions must be identified by their transaction ID.

-testmode
Instead of taking the transaction to be watched from the command line or indirectly from the address_watch
log file, choose a transaction from the most recently mined block and watch its confirmations. This
allows developers to test the program on a representative transaction without the need to to submit
one or manually find one in a block dump.

-type Any text
Print the text on the console.

-verbose n
Print detailed information about transactions and confirmations. The more times you specify -verbose,
the more information you’ll see.

-watch
Poll for new confirmations every -poll seconds until the ~confirmed number have arrived.

1.8 Transaction Fee Watch

Bitcoin transactions submitted for inclusion in the blockchain are accompanied by a transaction fee paid to
the miner who includes the transaction in a block published to the blockchain. Transactions can be selected
by miners at their discretion, but in most cases will be chosen to maximise the reward for including them
in a block, which usually means those which offer the highest transaction fee per byte (or, more precisely,
“virtual byte”) of the transaction. Whenever a block is added to the blockchain, Bitcoin Core computes
statistics of the fees for transactions within it. In addition, Bitcoin Core computes an “estimated smart fee”
as a suggestion to those submitting transactions at the current time.

15

The fee_watch program monitors the blockchain and reports the fee statistics for each block published and
fee recommendations from Bitcoin Core, optionally writing both of these to a log file for analysis by other
programs. The program is configured by the following command line options.

1.8.1 Command line options

Fee Watch is configured by the following command line options. In addition to the options listed here, an
additional set of options, common to other programs in the collection, specify how the program commu-
nicates with the Bitcoin Core Application Programming Interface (API): see “RPC API configuration” for
details.

—-confirmed n
Specifies the number of confirmations which must be received before a transaction is deemed confirmed.
This is used when requesting an estimate of the current transaction fee with the Bitcoin Core API call
estimatesmartfee to indicate the priority of the transaction. The default, 6, corresponds to standard
priority for this call.

-ffile filename
Write a log file of fee information collected by fee_watch. The log is written in Comma Separated
Value (CSV) format, and contains two kinds of records, distinguished by a digit in the first field. See
“Log file format” below for details.

-help
Print a summary of how to call and command line options.

-poll time
Query and report transaction fee estimates and statistics every time seconds, by default 300 seconds
(five minutes).

-quiet
Suppress console output for periodic transaction fee polls. Use this option when writing a log file with
the -ffile option if you don’t want to also see information as it is collected.

-type Any text
Print the text on the console.

-verbose n
Print detailed information about operations. The more times you specify -verbose, the more infor-
mation you’ll see.

1.8.2 Log file format

When the -ffile option is specified, fee_watch writes a log file recording the transaction fee information it
collects. This file is written in Comma Separated Value (CSV) format, and consists of two types of records,
as follows.

1.8.2.1 Estimated fee record

These records report the estimated fee, according to the Bitcoin Core estimatesmartfee API call, at the
indicated time. The estimated transaction fee in the record is expressed in BTC per virtual kilobyte of
transaction size, where virtual transaction size is as defined in Bitcoin Improvement Proposal 141 section
“Transaction size calculations”. One record of this type is generated for every -poll interval.

1. Record type, 1

2. Date and time (Unix time () format)

3. Date and time (ISO 8601 format)

4. Estimated transaction fee, BTC per virtual kilobyte

16

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

1.8.2.2 Block fee statistics record

If any blocks have been added to the blockchain since the last -poll interval, a record will be written,
reporting fee statistics for transactions in the block. Note that the time in these records is the time the block
was added to the blockchain, not the time of the fee_watch poll. The values reported in these records are
those returned by the getblockstats API call for the block, with fees reported in units of satoshis (BTC
0.00000001) per virtual byte of transaction, where virtual bytes are as defined for the Estimated fee record
above.

—_

Record type, 2

Block date and time (Unix time() format)
Block date and time (ISO 8601 format)
Block number

Minimum fee rate

Mean (average) fee rate

Maximum fee rate

10th percentile fee rate

© X NG W

25th percentile fee rate

H
e

50th percentile fee rate

—_
—_

. 75th percentile fee rate

—_
DN

. 90th percentile fee rate

1.9 RPC API configuration

The address_watch, confirmation_watch, and fee_watch programs all require access to the Application
Programming Interface (API) provided by a Bitcoin Core node. Access to this interface can be via three
mechanisms:

local Access to a Bitcoin Core node running on the same machine via the bitcoin-cli command line
program.

rpc Access to a Bitcoin Core node via its Remote Procedure Call (RPC) interface. The node may either be
on the same machine or on a different machine configured to accept requests from the host submitting
them.

ssh Access a remote Bitcoin Core node by submitting commands to its bitcoin-cli utility via the Secure
Shell (SSH) facility. The client and node machines must be configured to permit password-less access
via public key authentication.

The following options, common to all of these programs, allow you to configure access to the API. These
options may be set on the command line or via a configuration file common to all of the programs.

-clipath path
Specify the path used to invoke the bitcoin-cli program on the node machine. This option is used
for the local and ssh access methods. Note that on an SSH login, the user’s terminal login scripts
are not executed, so you may have to specify an explicit path even if bitcoin-cli is in a directory
included in the PATH declared by those scripts.

-host hostname
Specifies the host (machine network name) on which Bitcoin Core is running. If this is the same
computer, use localhost, otherwise specify the local machine name, fully qualified domain name, or
IP address of the machine.

-method which
Sets the method used to access the API. Use local if accessing a Bitcoin Core node on the same

17

machine, or ssh to access a Bitcoin Core node on another machine. The rpc option selects direct
access via the RPC interface on the same or a different host. RPC access is the most efficient and
should be used if available.

-rpccpass password
Set the password for access via the rpc method. This password is configured in the bitcoin.conf
file via the rpcpassword statement. If the password specified is the null string (""), the user will be
prompted to enter the password from the console, which is far more secure than specifying it on the
command line.

-port number
Sets the port used to communicate with the Bitcoin Core node when the rpc method is selected. The
default is 8332.

-user userid
Sets the User ID (login name) for access to a Bitcoin Core node on another machine via the ssh
method.

1.10 Installation

Fourmilab Blockchain Tools are written in the Perl and Python programming languages, which are pre-
installed on most modern versions of Unix-like operating systems such as Linux, FreeBSD, and Macintosh
OS X, and available for many other systems. Consequently, you can run any of the pre-built versions of
the tools, all of which have file types of “.pl” or “.py by simply invoking them with the perl or python3
commands. The programs use a number of modules, some of which are “core” or “standard” (included as
part of current language distributions), and others which may have to be installed either from the operating
system’s software library or the Comprehensive Perl Archive Network and its search engine, MetaCPAN or
with the pip3 utility for Python. If a module is available from your operating system’s distribution library,
that’s generally the best way to install it, since it will be automatically updated by the system’s software
update mechanism.

1.10.1 Required Perl modules

Here is a list of all Perl modules used by the programs. Not all programs use all modules: if you're only
interested in some of the programs, you need only install those they require. Modules marked as “core” will
be pre-installed on most modern versions of Perl.

e Bitcoin::BIP39

e Bitcoin::Crypto::Key::Private
e Bitcoin::Crypto::Key::Public
¢ Crypt::CBC

e Crypt::Digest::Keccak256

e Crypt::0penSSL: :AES

e Crypt::Random::Seed

e Crypt::SSSS

e Data: :Dumper core

e Digest::SHA core

e Digest::SHA3

e Getopt::Long core

e JSON core

e List::Util core

e LWP::Protocol: :https

18

https://www.cpan.org/
https://metacpan.org/

e LWP::Simple

o LWP

e MIME: :Base64 core

e Math::Random: :MT

e POSIX core

e Statistics::Descriptive
e Term::ReadKey

e Text::CSV

1.10.2 Required Python modules

To avoid commonality in language and libraries in the interest of avoiding single points of failure when
validating the correctness of generated wallets, the validate_wallet program is written in the Python
language (version 3 or greater), and requires the following modules be installed on systems that run it.
Modules marked “standard” are part of Python’s standard libraries and should be installed on most sys-
tems that support the language. If you don’t run validate_wallet, you needn’t bother installing these
modules.

e baseb8

e binascii standard

e coincurve

e cryptos

o fileinput standard

o pysha3 (If sha3 is installed, it must be removed.)
e re standard

e sys standard

1.10.3 Building from original source code

This software, including all programs, support files, utilities, and documentation was developed using the
Literate Programming methodology, where the goal is that programs should be as readable to humans as
they are by computers. The package is written using the nuweb literate programming system, which is
language-agnostic: it can be used to develop software in any programming language, including multiple
languages in a single project, as is the case for this one. The nuweb tools are free software written in
portable C, with source code downloadable from the link above.

Programs in nuweb are called “Web files”, which have nothing whatsoever to do with the World-Wide
Web (which it predates), having a file type of “.w”. All of the other files in the distribution are generated
automatically from the master Web. If you wish to modify one or more of the programs, it’s best to modify
the master code in the Web file and re-generate the programs from it. All of the building and maintenance
operations are performed by a Makefile which is, itself, generated from the Web. If you edit any of the files
associated with this program, be sure to use a text editor which supports the Unicode-compatible UTF-8
character set: otherwise some special characters may be turned into gibberish.

Documentation is generated automatically in the A TEX document preparation language, with the final PDF
documents produced with XeTeX, a version of TEX extended to support the full Unicode character set.
These utilities can be installed from the distribution archives of most Unix-like systems.

1.10.4 Configuration parameters

When you build from source code, a number of build-time configuration parameters are incorporated from
the Web file configuration.w. Please see the documentation for that file in the source code listing (in the
Introduction chapter, section “Configuration”). Most of the configuration parameters set defaults which can

19

http://literateprogramming.com/
http://nuweb.sourceforge.net/
https://en.wikipedia.org/wiki/UTF-8
https://www.latex-project.org/
https://en.wikipedia.org/wiki/XeTeX
https://en.wikipedia.org/wiki/TeX

be overridden by command-line options, so setting them is normally a convenience to avoid having to specify
the options you prefer, not a necessity.

1.10.5 Build procedure

Once you have installed all of the required utilities (nuweb, XeTeX, Perl, Python, and the modules required),
you can build the programs by entering the top level directory of the distribution (the one which contains the
blockchain_tools.w file) and entering the following commands. (I've added comments to the commands
to explain what they do—you need not enter them.)

make dist # Build all programs and documents
make regress # Run regression test

It is not unusual to see a few differences in the balances reported for some of the addresses in the regression
test output: the blockchains never sleep and balances sometimes change. If that’s the only discrepancy
reported in the regression test, you can run “make regress_update” to incorporate the changes in the
expected output of the regression test.

After the build process, the ready-to-run Perl and Python programs will be in the bin subdirectory while
User Guide and program listing PDF files will be in the doc subdirectory. You can, if you wish, re-generate
the distribution archive with “make release”.

1.11 License and Disclaimer of Warranty and Liability

This product (software, documents, and data files) is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License (legal text). You are free to copy and redistribute this material in
any medium or format, and to remix, transform, and build upon the material for any purpose, including
commercially. You must give credit, provide a link to the license, and indicate if changes were made. If you
remix, transform, or build upon this material, you must distribute your contributions under the same license
as the original.

This product is provided with no warranty, either expressed or implied, including but not limited to any
implied warranties of merchantability or fitness for a particular purpose, regarding these materials and is
made available solely on an “as-is” basis.

In no event shall John Walker be liable to anyone for special, collateral, incidental, or consequential damages
in connection with or arising out of distribution or use of these materials. The sole and exclusive liability of
John Walker, regardless of the form of action, shall not exceed the compensation received by the author for
the product.

John Walker reserves the right to revise and improve this product as he sees fit. This publication describes
the state of this product at the time of its publication, and may not reflect the product at all times in the
future.

In particular, no claims are made for, or warranty of, the correctness of results produced by these programs,
or security of them, and no liability shall result from their use or misuse. Before sending funds to any
cryptocurrency address, it is essential to verify that you possess the correct private key to retrieve them,
and that this key is stored securely in a manner that protects it from loss, theft, or destruction. Because
the correctness and security of any computer system depends upon not just the applications running on it,
but the language and system libraries they use, the underlying operating system, the hardware on which
it runs, and the personnel and procedures which operate it, it is entirely the responsibility of the user to
independently verify the correctness of any results it produces and to satisfy themselves of their security for
the intended application.

20

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

	User Guide
	Overview
	Bitcoin and Ethereum Address Tools
	Bitcoin Blockchain Analysis Tools

	Blockchain Address Generator
	Architecture
	Commands

	Multiple Key Manager
	Command line options

	Paper Wallet Utilities
	Paper Wallet Generator
	Creating a paper wallet
	Command line options

	Cold Storage Wallet Validator

	Cold Storage Monitor
	Watching cold storage addresses
	Command line options

	Address Watch
	Command line options
	Log file formats
	Watched address log file
	Block statistics log file

	Confirmation Watch
	Command line options

	Transaction Fee Watch
	Command line options
	Log file format
	Estimated fee record
	Block fee statistics record

	RPC API configuration
	Installation
	Required Perl modules
	Required Python modules
	Building from original source code
	Configuration parameters
	Build procedure

	License and Disclaimer of Warranty and Liability

